

Developing Applications, Windows Xbase Edition 185

Chapter 6
Interfacing to Application DLLs

Introduction

R&R includes a special function, CDLL(), that allows you to call a function
in a Windows Dynamic-Link Library (DLL) from an R&R report. You
might use CDLL() when you want to write a DLL-based function to
perform an operation that R&R’s UDFs don’t support, such as a
trigonometric function. CDLL() also gives R&R access to functions that are
used by other elements of your application, since DLLs are available to all
parts of a Windows application.

Syntax

CDLL() takes three string arguments and returns a string value. The syntax
is:

CDLL(string1,string2,string3)

where string1 is the name of the DLL that contains the function, string2 is
the name of the function, and string3 is an argument being passed to the
DLL function. You can use R&R functions to convert the argument from
other data types and to return other data types. For example, the calculated
field expression

CDLL("CONVERTS.DLL","MILES_KILO",STR(DISTANCE))

uses the STR function to convert the decimal value of DISTANCE into a
character string and passes the string value to the MILES_KILO function in
CONVERTS.DLL, which converts the distance in miles to kilometers.

CDLL() expects a boolean return value from the called DLL function: true
to indicate the function executed successfully, or false to indicate an error. If
the DLL returns a false value, CDLL() returns an error string. If the DLL
function executes successfully, it should overwrite its input string with the
output string to be returned by the R&R CDLL() function. R&R passes the
input and output strings using an 8000-byte buffer.

Chapter 6

186 Developing Applications, Windows Xbase Edition

Example
This example uses CDLL() to call the functions RR_SIN, RR_COS, and
RR_TAN from TRIGS.DLL. The functions are used to return the sine,
cosine, and tangent values of the field DEGREES. Since CDLL() takes an
input string and produces an output string, we first created three UDFs that
take the value of DEGREES as a numeric and return its value as a numeric.
These values are converted to character strings before being passed to
TRIG.DLL. The three UDFs and their declarations and formulas are:
SIN(N_DEGREES) =
 VAL(CDLL("TRIG.DLL","RR_SIN",STR(DEGREES,6,0)))
COS(N_DEGREES) =
 VAL(CDLL("TRIG.DLL","RR_COS",STR(DEGREES,6,0)))
TAN(N_DEGREES) =
 VAL(CDLL("TRIG.DLL","RR_TAN",STR(DEGREES,6,0)))

In each UDF formula, the STR function converts the numeric value of
DEGREES into a character string, as required for the third argument to
CDLL(). The second argument of STR specifies the character length of the
string.; the third argument specifies the number of decimal places. The VAL
function converts the string result of CDLL() into a numeric representation,
which is more useful for such functions.

Creating these UDFs allows you to supply the DEGREES argument as a
numeric value and return it as a numeric value; the conversion to string
representation and back is “hidden.” To use these UDFs to access the DLL
functions, you create calculated fields whose expressions supply the
DEGREES as numeric arguments to SIN(), COS(), and TAN().

Note the following:

q Although you can pass only a single argument to a DLL, that string
can contain multiple arguments that can be parsed by the DLL
function. The single string value returned by the function can also
contain multiple values that can be parsed in R&R within a
calculated field expression.

q If you use CDLL() in reports you plan to distribute for use with the
Runtime, make sure that the referenced DLLs are available when
the Runtime is executed.

