- t
| riter: Technical Bulletin

Recursive Functions

Product: ARPEGGIO™ Host: N.A.
R&R Report Writer® for NIC: N.A.
Windows® Interface: N.A.
Version: All Oper Sys: Microsoft® Windows® NT®
Summary

Thistechnica bulletin explains a powerful technique caled recursve functions. In computer
terminology, recursion occurs when afunction cdlsitself. Y ou may want to think of recurson as
aform of looping, which occurs when a program performs the same thing repeatedly while a
given condition istrue.

Recursion and Looping

Y ou may recdl situations where you needed to perform aloop in a caculated field. Or, you
may have no idea what we mean by recursion and looping. Well explain and demondtrate
recurson by presenting three user-defined functions (UDFs): substring replace, substring count,
and substring search.

User-defined functions are created by choosing User Function from the Caculations menu. See
the User- Defined Functions section of Using Functions chapter in the R& R User's Guide if you
need help with this command. Also, you need to be familiar with the $ operator and the
following functions. AT, LEN, MAX, SUBSTR, STUFF, and TRIM.

Substring Replace

We will create afunction that dlows you to replace dl occurrences of a substring with another
substring.

For example, dBASE® dlows you to insert semicolons within a character fidd at the point
where you want anew line to begin when thefidd is printed. R& R Report Writer supportsthis
feature, but some users want R& R Report Writer to ignore dl semicolonsin agiven fidd. The
expression StrReplace(COMMENTS,";"," ") can be used to replace unwanted semicolons with
gpacesin afield named COMMENTS.

September 25, 1999 Page 1
© 1999 Liveware Publishing Inc.

,w t
R ﬂtel’ Technical Bulléetin: Recursive Functions

Here are the definitions for the two parts of the substring replace function. Aswe explain below,
you need to break recursive functions into two parts.

Declaration: _ssReplace(c_string,c_old,c_new)

Formula: lIF(old$string, _ssReplace(
STUFF(string, AT(old, string), LEN (old), new), old, new), string)

Declaration: StrReplace(c_string,c_old,c_new)

Formula: IIF(TRIM (old)$TRIM(string),
_ssReplace(TRIM(string) ,TRIM(old), TRIM(new)), string)

The StrReplace() function requires three inputs: the string in which you are making the
replacements, which is denoted by the name gring, the existing substring you want to replace,
denoted by the name dd, and the replacement substring, denoted by the name new. The
formulais sraght forward; hereiswhat it saysin English:

If the unwanted substring is contained within the string, replace all occurrences of the
unwanted substring with the replacement substring, otherwise, return the original string.

The _ssReplace() function is caled by the StrReplace() function to make the substring
replacements. It repegtedly cdlsitsdlf (loops) aslong as there's till a copy of the unwanted
substring contained within the string. We take advantage of the built-in STUFF() function to
make the substring replacement.

Since the STUFF() function replaces a single occurrence of the unwanted string, each repetition
of _ssReplace() cals STUFR() to make the next replacement.

When there are no more copies of the unwanted substring to replace, _ssReplace() returnsthe
modified gtring. Herés what the formula saysin English:

If the unwanted substring is contained within the string, replace the next occurrence of the
unwanted substring, otherwise, return the string.

Let's step through a smple example to get acquainted with recursion. Suppose you create a
calculated field expression StrReplace("aba’,"d',"A"). Here's what happens when the expression
isevauated:

1. StrReplace() tests whether the substring "d" is contatenated within the string "aba’. Thistest
is performed with the expresson TRIM (substring)$TRIM(string). Both the substring and the
string need to be trimmed so that trailing blank spaces are not included, otherwise you might
look for the subgtring "a " (the letter "d" followed by four Spaces) within the string "aba’
and not find it.

2. Since the substring is contained within the string, the I1F() function evauates the expresson
_SSReplace(TRIM(string), TRIM(old), TRIM(new)). This expression callsthe _ssReplace()
function with the trimmed string and two trimmed substrings.

September 25, 1999 Page 2

,w t
R ﬂtel’ Technical Bulléetin: Recursive Functions

3.

The _ssReplace() function first tests whether the old substring is contained within the string,
to decide whether to continue looping or terminate. The first time_ssReplace() is caled, the
subgtring "d" is contained within the string "aba’. Since the condition is met, _ssReplace()
cdlsitsf.

In the second call to _ssReplace(), the STUFF() function changes the firgt "a" within "abd" to
"A". During the second iteration of _ssReplace() the test is once again performed to

determine whether "d" is contained within the string, which isnow "Aba’. Since theres il
another "d" within"Abd', _ssReplace() cdlsitsdf again.

Inthethird cdl to _ssReplace() the STUFR() function changes the remaining "a' within
"Abd' to "A". During the third iteration of _ssReplace() the test is once again performed to
determine whether "d" is contained within the string, which isnow "AbA". Sinceit's not,
_SSReplace() returns the completed string "AbA".

Thethird call to _ssReplace() terminates and returns the completed string to the second call
to _ssReplace(), which returns the completed string to the first call to _ssReplace(), which
returns the completed string to StrReplace(), which returns the completed string to the
caculated fidd. The cdculated fidd expresson StrReplace("abd’,"a’,"A") evauaesto the
vaue"AbA".

General Observations about Recursive Functions

From this description of how atypica recursive function works, we can make the following
generd observations about recursive functions. We will gpply these rules in the next two
examples, aso.

1.

Recursive functions are separated into two parts: afunction you use in calculated fidd
expressions (let's cdl this the outer function), and another function used only by the outer
function to perform the recursve cdculations (let's cal thisthe internd function). In the
substring replace example, the StrReplace() function isthe outer function and the
_SSReplace() function isthe interna function.

The outer function handles such tasks is pre-processing the input values and error checking.
In the subgiring count example, input vaues are pre-processed by the TRIM() function, and
error checking is performed by the $ (contained within) operator.

Theinternd function, the one performing the recurson, dmaost dways uses the 11F() function
to test whether to continue or stop the recursion. The CASE() function can sometimes be
used in place of 11F() in very complex formulas.

Substring Count

The purpose of this function isto count the number of times a substring appears within astring.
For example, you may have aten character field that contains responsesto ten Yes/No

September 25, 1999 Page 3

: t
m. Technical Bulléetin: Recursive Functions

questions. The contents may look like"YYNNYNNYNY". This function can be used to count
the number of Ysor Ns.

Here's the definition for the substring count function, which like the StrReplace() function, is
divided into two parts for the reasons described above:

Declaration: _ssCount (c_ss, c_string)

Formula: IIF(ss$string, 1+_ssCount (ss,
SUBSTR(string, AT(ss,string)+LEN(ss))), 0)

Declaration: StrCnt(c_ss, c_string)

Formula: IIF(TRIM(ss)$TRIM(string),
_ssCount(TRIM(ss), TRIM(string)), 0)

The StrCnt() function requires two inputs. the substring you are counting, which is denoted by
the name ss, and the string in which you are searching, which is denoted by the name gring.
Hereés what the formula saysin English:

If the substring is contained within the string, return the number of occurrences of substring
within string, otherwise, return O.

The _ssCount() function is used by the StrCnt() function to do the actud counting, if the
substring occurs within the string at least once. Otherwise theré's no need to call _ssCount(), so
SrCnt() returns 0. Hereés what the _ssCount() formula saysin English:

If the substring is contained within the string, return 1 plus the number of occurrences of the
substring within the portion of the string after this occurrence, otherwise, return O.

The _ssCount() function cdls itsdlf repeatedly until there are no more occurrences of the
subgtring within the string. Each call to _ssCount() passes an ever amaller portion of the origind
gtring, throwing away the part up through the occurrence of the substring that was just counted.

Let's step through the mechanics of this function to make sure you understand it. For example,
suppose you creete a caculated field expression StrCnt("a’,"aba'"). Heré's what happens when
the expresson is eva uated:

1. StrCnt() tests whether the substring "d" is contained within the string "aba’. Thistest is
performed with the expression TRIM(s9)$TRIM(string).

2. Sincethe subgtring is contained within the string, the 11F() function evaluates the expresson
_SSCount(TRIM(ss), TRIM(string)). This expression cdls the _ssCount() function with the
trimmed substring and gtring.

3. The _ssCount() function first tests whether the subgtring is contained within the string, to
decide whether to continue looping or terminate. Thefirst time _ssCount() is caled,
subgtring "d" is contained within the string "abd’. Since the condition is met, the count is
incremented by 1 and _ssCount() callsitsdf.

September 25, 1999 Page 4

,w t
R ﬂtel’ Technical Bulléetin: Recursive Functions

4. Inthe second call to _ssCount(), the input string "aba" is shortened to "ba" since the first
occurrence of "d" was counted. Thisis done by the expresson SUBSTR(dring,
AT(ssgring) + LEN(ss)).

5. During the second iteration of _ssCount(), the substring "a'" is contained within the string
"ba’. ThellFK() function adds 1 to the count and calls _ssCount() again with the input string
"ba" shortened to " since the first two occurrences of the substring "a" were counted.

6. During the third iteration of _ssCount(), the substring "d" is not contained within the string ™",
so the recursion stops. The 11F() function returns O, which is added to the 1 from the second
cdl to_ssCount(), which is added to the 1 from thefirst cal to _ssCount(), giving atota of
2, which is returned to the StrCnit() function. The StrCnit() function returns the value 2, since
there are two occurrences of "a" within "aba'".

Substring Search

The AT() function provides the ability to search a string for a substring and return its position
within the gring. The AT() function islimited to searching for the first occurrence of the
substring. We will create afunction that can search for a specified occurrence such asthefirg,
second, etc. In addition, this function can search for the last occurrence, next-to-last
occurrence, €tc.

For example, suppose you've used the LIBNAME() function to return the report library path
name, which might be a gtring such as "C\RSW\REPORTS.RP6". To extract the library name
from the path name you can use the SUBSTR() function provided you know the position of the
last occurrence of the substring "\". To determine this position, use the StrSrch() function as
follows.

The StrSrch() function requires three inputs: the substring, the string, and the number of the
occurrence you wish to locate. To specify occurrences reletive to the end of the string use
negative numbers, such as-1 to specify the last occurrence, -2 to specify the next-to-last
occurrence, etc. In the path name example, the expression

StrSrch("\",LIBNAME(),-1)
returns the position of the last backdash in the path name.

Y ou can extract the library name from the path name by using the StrSrch() function in the
expresson SUBSTR(LIBNAME(),StrSrch(*\",LIBNAME(),-1) + 1). The resulting string is
"REPORTS.RP6". And in case youre wondering, the ".RP6" can also be removed from the
path name to return the string "REPORTS'. Here's one expression you can use to remove the
peth name and the file name extenson:

September 25, 1999 Page 5

,w t
R ﬂtel’ Technical Bulléetin: Recursive Functions

LEFT(
SUBSTR(LIBNAME() , StrSrch("\", LIBNAME(), -1) +1),
AT(".", SUBSTR(LIBNAME(),STRSEARCH("\", LIBNAME(), -1)+1) -1)

Now that you've seen how the StrSrch() function can be used, well show you how it works.
Here's the function definition, again in two parts.

Declaration: _ssSearch(c_ss, c_string, n_num, n_ptr)

Formula: IIF(ss$(SUBSTR(string,ptr)) AND num>=1,
_ssSearch(ss, string, num-1,
AT(ss, SUBSTR(string,ptr)) + LEN(ss)+(ptr-1)), ptr - LEN(sS))

Declaration: Strsearch(c_ss, c_string, n_num)

Formula: IIF(TRIM(ss)$TRIM(string),
_ssSearch(TRIM(ss), TRIM(string),
[IF(num<0, StrCnt(ss,string) +num+1, num), 1), 0)

The StrSrch() function requires three inputs. the substring you are searching for, which is denoted
by the name ss, the string in which you are searching, denoted by the name dring, and the

number of the occurrence of the substring you are searching for, denoted by the name num.
Heres what the formula saysin English:

If the substring is contained within the string, return the starting position of the specified
occurrence of the substring within the string, otherwise, return 0.

Like the StrCnt() function, StrSrch() pre-processes the substring and string using the TRIM ()
function. It dso pre-processes the occurrence number to convert negative numbers to positive
numbers, and initidizes a pointer to the first character in the string. The pre-processing of the
occurrence number and the initidization of the string pointer deserve amore detailed
explanation.

Occurrence number - Since you cant literdly search for the - 1st occurrence of a substring
within agtring, you need to adjust this negative number to the actua occurrence number. If there
are two occurrences, using -1 to specify the last occurrence actudly refersto the second
occurrence. Likewise, using -2 to pecify the next-to-last occurrence actually refersto the first
occurrence. The expression StrCnt(ss,string) + num +1 converts negative numbers to positive
numbers.

String pointer - The _ssSearch() function uses adightly different technique for processing the
string than the _ssCount() function described above. The _ssCount() function chops off the
portion of the string it has already processed. In contrast, the _ssSearch() function keeps a
pointer to the position within the string up to which it has processed. The posgitioning method is
offered as an aternative because it's a bit more complex, but operates faster.

The pointer isinitidized by StrSrch() to 1, to point to the first character within the string, and is
denoted by the name ptr. Herés what the _ssSearch() function saysin English:

September 25, 1999 Page 6

,w t
R ﬂtel’ Technical Bulléetin: Recursive Functions

If the substring is contained within the part of the string starting at the pointer, and there are
more occurrences of the substring to search for, decrease the number of remaining
occurrences to search for, move the pointer beyond the current occurrence, and search for
the next occurrence, otherwise, return the position of the substring within the string.

This dgorithm is a bit more complex than the ones we've worked with so far, so let's step
through an example using the expresson StrSrch("\",LIBNAME(), -1) where LIBNAME()
evauates to the dring "CARSW\REPORTS.RP6".

1.

StrSrch() tests whether the substring "\" is contained within the string
"CARSW\REPORTS.RP6" with the expresson TRIM(ss)$TRIM(string).

Since the substring is contained within the string, the 11F() function eva uates the expression
that calls _ssSearch() with the trimmed substring and string, and the adjusted occurrence
number, which in this case is 2. The occurrence number -1 denotes the "last” occurrence of
"\", which is adjusted to 2 since the StrCnt() function finds two occurrences of "\".

The _ssSearch() firgt tests whether the substring is contained within the string and whether
there are more occurrences to search for, to decide whether to continue looping or to
terminate. The firgt time _ssSearch() is cdled, the string "CARSW\REPORTS.RP6" does
contain the substring '\" and there are ill two occurrences of "\" to search for. Since the
conditions for recursion are met, _ssSearch() cals itsaf.

In the second call to _ssSearch(), the occurrence number is decremented from 2 to 1 since
an occurrence of the substring '\" has been found. Also, the pointer to the string
"CARSW\REPORTS.RP6" isincremented from 1 to 4, so the remaining portion of the string
to search is"RSW\REPORTS.RP6".

During the second iteration of _ssSearch(), the substring "\" is contained within the string
"RSW\REPORTS.RP6" and thereis till one occurrence of "\"to search for. Since the
conditions for recurson are met, _ssSearch() cdlsitself again.

In thethird call to _ssSearch(), the occurrence number is decremented from 1 to O since
another occurrence of the substring "\" has been found. Also, the pointer to the string
"CARSW\REPORTS.RP6" isincremented from 4 to 7, so the remaining portion of the string
to search is"REPORTS.RPG".

During the third iteration of _ssSearch(), the substring "\" is not contained within the string
"RSW\REPORTS.RP6", and even if it were, there are no more occurrences of "\" to search
for. Since the conditions for recursion are not met, _ssSearch() decrements the pointer from
7 10 6 to paint to the second occurrence of the substring "\ with the expression ptr -
LEN(s9).

The recurson unwinds as the third cal to _ssSearch() returns to the second call, which
returns to the firgt cal, which returns to the outer function, Strsearch(), which returns the

September 25, 1999 Page 7

: t
m' Technical Bulléetin: Recursive Functions

vaue 6. The second occurrence of the substring "\"within the string
"CARSW\REPORTS.RP6" islocated at character position 6.

Conclusions

The three subgiring functions presented in this article were designed to have a balance of dlarity,
gpeed, and usefulness. Y ou may wish to tailor these formulas to your specific needs. For
example, you may wish to sacrifice usefulness for speed in the subsiring search function if you
only ever need to search for the lagt (rightmost) occurrence of a substring within a string.

Instead of using the StrSrch() function, you could develop a dedicated function that isless
generd but faster. The following Ret() function is analogous to the AT() function, but returns the
position of the rightmost occurrence of the subsiring within the string.

Declaration: _rat(c_ss, c_string, n_ptr)

Formula: IIF(ss$(SUBSTR (string, ptr)),
_rat (ss, string,
AT(ss, SUBSTR(string, ptr))+LEN(ss)+(ptr-1)), ptr-LEN(ss))

Declaration: Rat(c_ss, c_string)
Formula: MAX(_rat(TRIM(ss), TRIM(string), 1), 0)

All trademarks are the property of their respective owners. The information contained in this technical
bulletin is subject to change without notice. Liveware Publishing Inc. provides this information “asis’
without warranty of any kind, either expressed or implied, but not limited to the implied warranty of
merchantability and fitness for a particular purpose. Liveware Publishing may improve or change the
product at any time without further notice; this document does not represent a commitment on the
part of Liveware Publishing. The software described in this document is furnished under alicense
agreement or nondisclosure agreement. The software may be used or copied only in accordance with the
terms of the licensing agreement.

September 25, 1999 Page 8

